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Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic
studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative
disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness
and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS)
framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three
components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test
procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model
explicitly models the functional features of functional phenotypes through the integration of smooth coefficient
functions and functional principal component analysis. Statistically, compared with existing methods for genome-
wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important
genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms
existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the
family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's
Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and
501,584 SNPs.

anisotropy) have been extracted along major fiber bundles to reveal
white matter tract maturation and integrity (Smith et al., 2006; Goodlett
et al., 2009; Yushkevich et al., 2008). Shape analysis has been widely
used to characterize features of brain cortical and subcortical structures,

1. Introduction

Functional responses that frequently arise in neuroimaging studies
have been widely used to characterize brain structure and function

(Miller and Qiu, 2009; Smith et al., 2006; Styner et al., 2005; Fischl,
2012; Goodlett et al., 2009; Yushkevich et al., 2008). For instance, in
diffusion tensor imaging, various diffusion properties (e.g., fractional

including cortical complexity, curvature, spectral content, and other
indices (Miller and Qiu, 2009; Styner et al., 2005; Fischl, 2012). Thus,
they have been widely used to better understand normal brain
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development and the neurological bases of neuropsychiatric and neuro-
degenerative diseases. Therefore, these functional responses may be
effective phenotypes that facilitate the identification of causal genes and
the mechanistic understanding of pathophysiological processes of
neurological disorders (Zhao and Castellanos, 2016). Our primary
research interest is to identify novel genetic effects on the local changes
of various functional responses.

Statistically, we are interested in developing a fast and efficient sta-
tistical method to correlate functional phenotypes measured at tens of
thousands of grid points (Ny ~ 10% — 10°) with tens of millions of known
genetic variants (Ng ~ 107), or so-called big data squared. Conventional
analysis of such imaging—genetic data is based on methods for voxel-wise
genome-wide association analysis studies (VGWAS). Such VGWAS
methods primarily consist of three major steps: Gaussian smoothing of
the functional responses across subjects, a total of NgNy (~ 1010 — 10'2)
massive univariate analyses, and correction for multiple comparisons in
an expanded image x gene search space with NgNy elements (Hibar et al.,
2011; Shen et al., 2010; Huang et al., 2015; Medland et al., 2014; Zhang
et al., 2014; Thompson et al., 2014; Liu and Calhoun, 2014). These
methods are not only computationally extensive, but also involve major
methodological limitations when searching for novel genetic markers
associated with the local changes of functional phenotypes. Specifically,
running VGWAS can pose significant computational challenges,
including limited computer memory, finite CPU speed, and limited CPU
nodes. For instance, for VGWAS, it is computationally intensive to
compute all NyNg (~ 1010 — 10'3) test statistics for all M (~ 10° — 10%)
bootstrapping replicates and to store and manage all NgNyM
(~ 103 — 10'7) test statistic images in a limited computer hard drive.
Moreover, due to massive model fitting, the statistical power is usually
very low after adjusting for multiple comparisons, while the spatial
correlation and smoothness features in functional phenotypes are not
considered, leading to difficult interpretation of the results.

We propose two important strategies to address several fundamental
bottlenecks of constructing brain-genetic association maps for functional
responses in large-scale imaging genetic studies. First, instead of
repeatedly fitting a univariate model to each voxel and each genetic
marker, we treat all image measures as a single functional response
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measured at all Ny grid points and focus on testing the coefficient
function of interest, which is intrinsically low rank. We develop some
functional data analysis (FDA) methods to explicitly account for the three
key features of the functional phenotypes: spatial smoothness, spatial
correlation, and the low-dimensional representation of functional data.
The key advantage of using FDA is to reduce the dimension of the
functional responses from Ny to an intrinsically low dimension, denoted
as Ny, which is much smaller than Ny. Second, we develop a new global
sure independence screening (GSIS) procedure to eliminate most of the
“noisy” genetic variants and a divide-and-conquer algorithm to effi-
ciently perform multiple comparisons. The divide-and-conquer algorithm
is critically important for performing FGWAS when N is extremely large,
such as for whole-genome sequencing.

The aim of this paper is to develop a FGWAS pipeline with several
formal FDA tools as a novel extension of VGWAS for functional responses.
A schematic overview of FGWAS is given in Fig. 1. Although FDA
methods have been widely studied in the literature, most focus on one-
dimensional curves. See Ramsay and Silverman (2005); Wang et al.
(2016); Morris (2015) and references therein for a comprehensive review
of FDA. Although there are a few methods for the association mapping of
longitudinal phenotypes (Nicolae, 2016; Wu and Lin, 2006; Reimherr
and Nicolae, 2014), little has been done on the association mapping of
functional phenotypes of two or higher dimensions. Compared with
existing methods in the literature, five major methodological contribu-
tions of this paper are as follows.

e We use a multivariate varying coefficient model (MVCM) as a special
function-on-scalar regression model to fit the functional phenotypes
with a large number of genetic variants (Zhu et al., 2011; Di et al.,
2009; Zipunnikov et al., 2011; Zhu et al., 2014; Guo, 2002; Lin et al.,
2014), while explicitly accounting for their three key functional
features as discussed above. The use of the MVCM can project Ny
imaging measures into the Nyo—dimensional space, leading to
computational and efficiency gains on the order of O(Ny/Nyy).

e Under MVCM, we use a local Wald-type test statistic to detect novel
genetic variants that influence brain structure and function. More-
over, such a test statistic outperforms the test statistics used in other

Functional Genome Wide Association analysiS (FGWAS)

Multivariate Global Sure Significant
Varying Independence Vertex-locus
Coefficient 4 Screening ¥ | Subregion-locus
Model Procedure Detection

Fig. 1. Schematic overview of FGWAS.
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association mapping methods in terms of statistical power (Nicolae,
2016; Wu and Lin, 2006; Reimherr and Nicolae, 2014; Huang et al.,
2015).

We introduce a GSIS procedure based on global test statistics to test
the hypotheses of interest associated with functional phenotypes. The
GSIS not only selects Ngo “important” genetic variants, but also offers
the sure independence screening property (Fan and Lv, 2008) with a
vanishing false selection rate. The use of GSIS can reduce the size of
genetic variants from Ng to Ngo, leading to a computational gain on
the order of O(Ng/Ngo).

We develop a divide-and-conquer algorithm coupled with parallel
computing to efficiently perform multiple comparisons in order to
detect subregion-locus pairs, while controlling for their family-wise
error (FWE) rate. Compared with VGWAS, FGWAS achieves an
extensive computational gain in terms of both memory and speed.
The package for FGWAS, along with its documentation, are freely
accessible from the website “http://odin.mdacc.tmc.edu/bigs2/” and
“https://github.com/BIG-S2”. To make it user-friendly, we developed
a graphical user interface to package the code, which is also freely
downloadable from the same website. Our FGWAS package can
handle three types of functional phenotypes: curves, surfaces, and
volumes in R3. To facilitate its application to real data, we use three
computing languages, Rcpp, Matlab, and Python, to develop the
corresponding versions.

. Method

Suppose that we observe functional responses, clinical covariates and
genetic markers for n unrelated subjects. Without loss of generality, we
focus on a compact set, denoted as Z'cR3, (e.g., cortical and subcortical
regions), which is general enough to cover curves, surfaces, and volumes
in R3. Let d be a grid point in . It is assumed that there are Ny common
grid points dy, ..., dy, across all subjects. Let g be a locus in the set of Ng
genetic markers, denoted as & = {gi,...,8n, }. Specifically, for the i-th
subject, we observe a J x 1 vector of imaging measurements at d,
denoted as y;(d) = (ya (d), ...,yu(d))", ap. x 1 vector of covariates (e.g.,
age and gender), denoted as x; with its first component being 1, and a
Pg < 1 vector associated with the genetic marker at the locus g and/or x;,

denoted as z;(g) = (2i1(8); -+, Zip, (g))T.

2.1. FGWAS

We developed the FGWAS pipeline to efficiently carry out the asso-
ciation mapping of functional phenotypes. A schematic overview of
FGWAS is given in Fig. 1. Our FGWAS consists of three major
components:

e (I) a multivariate varying coefficient model (MVCM);
e (II) a global sure independence screening procedure;
e (III) a test procedure based on the global and local test statistics.

We elaborate on these components below.

2.2. FGWAS (I): multivariate varying coefficient model

For the genetic marker at locus g, the MVCM is defined as

yi(d) = xI7(d) +2:(g)" B (d) + 1 (d) + e;(d), ¢))

where ﬂ}c)(d) is a p. x 1 vector of non-genetic fixed effects, ﬂ;g)(d) isa
pg x 1 vector of fixed genetic effects, 7 (d) = (n'¢(d), ..., (d))"
characterizes both subject-specific and location-specific variability, and
ei(d) = (ea(d), ...,ey(d))" are measurement errors. It is also assumed

that nl(g) (d) and ¢;(d) are mutually independent and identical copies of
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SP(0,%#) and SP(0,X,), respectively, where SP(u,%) denotes a sto-
chastic process vector with mean function u(d) and covariance function
¥(d,d). Moreover, Z.(d,d) takes the form of Q.(d)1(d =d'), where
Q,(d) is a nonnegative function of d and 1(-) is an indicator function of
an event.

Compared with the standard linear regression model, MVCM explic-
itly accounts for spatial smoothness, spatial correlation, and the low-
dimensional representation of functional responses (Zhu et al., 2011,
2014; Zipunnikov et al., 2011; Guo, 2002). The functional responses in
neuroimaging studies can usually be regarded as a noisy version of a
smooth function of d € . For spatial smoothness, it is reasonable to
assume that ﬂ;c)(~) and ﬁ;g) (-) in MVCM may inherit the smooth feature

from functional phenotypes and can be represented as a linear combi-
nation of a small number of basis functions, such as B-spline. For spatial

correlation, it is assumed that nlgg) (+)’s are smooth functions and allow for
the Karhunen-Loeve expansion as follows:

’7§,‘g> (d) = Zfi,/lll/jl(d) 2)
=1

where y;(-)’s are eigenfunctions of Zj(.f) (+,+) such that Z}gfg)(d, d) =
Yt Awj(d)yp(d) with 377° Ay < oo captures the spatial correlation of
e
of the i—th subject such that E(;;) = 0 and Var(&;;;) = 4. Thus, we can
()
i
that nlg.g) (d)zzlegi jiwi(d), where L is a positive integer. In FGWAS,
following the standard approach in functional data analysis, we use the
fraction of variance explained by the first few top PC components to
determine L. In both simulations and ADNI data analysis, the first three
eigenfunctions are included in the model, since they explain more than
90% of variance. Finally, we can obtain a low-dimensional representa-
tion of y;;(d) as follows:

(d). Moreover, ¢; ; is the (j, I)—th functional principal component score

accurately approximate 7’ (d) by a small number of eigenfunctions such

L
il (@) + 2:(0) B () + D (). ®
=1

For each genetic marker, representation (3) ensures that the intrinsic
dimension of y;(-) is much lower than Ny. Moreover, since it is expected
that ﬁ}g) (d) = 0 holds for most loci, the true search space should be much
smaller than Ny x Ng.

Under model (1), we start with a hypothesis testing problem
onp¥(d),j=1,....J,

Hy : p(d) = 0v.s. H, : f(d)#0 for each(g, d), “4)
where ¢ (d) = vec([f(d), ..., ¥ (d)]), and vec(-) is the vectorization of
a matrix.

As an example, in our analysis of data from the Alzheimers Disease
Neuroimaging Initiative (ADNI), we are interested in detecting novel
genetic markers that influence the radial distance and determinant of the
Jacobian matrix of both the left and right hippocampal surfaces. We
consider MVCM (1) on the hippocampal surfaces with
(ya(d),y2(d))" = (radial distance, determinant)”, x; =(intercept,
gender, age, apolipoprotein E (APOE) gene ¢4, the top 5 principal
component scores of all single-nucleotide polymorphisms [SNPs])T, and
2i(g) =(SNP value).

We introduce a local Wald-type test statistic T,(g, d) as follows:

e d =@ (5@} @ {Zeze) @, ©
where ro(d) = 3% () - Bias(3® (a)),
Zx(g) = (1 - X(XTX)'X")Z(g)", X = (1, %),
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Z(g) = (z1(8), -
E<g>(d) and i,(f)
Bias(ﬁ(@ (d)) is the bias term of ﬁ(g) (d). Moreover, under the null hy-
pothesis Hy, the limiting distribution of T, (g, d) can be approximated by a
weighted y? distribution (Zhang and Chen, 2007).

To estimate all unknown parameters in model (1), we employ a
weighted least squares (WLS) method based on the multivariate local
polynomial kernel smoothing technique (Fan and Gijbels, 1996; Zhang
and Chen, 2007). Let K(-) be a kernel function, a®? = aa”, and H be a
bandwidth matrix with a simple diagonal form. We also denote that

_ ‘H"IK(Hfl (dn — d)) and wi(dp — d) = (1, (dm — d)TH1)T.

For each j and a fixed bandwidth matrix Hg, the WLS estimator of ﬂ;g) (d)
is given by

2,(g)), and ® denotes the Kronecker product. The

are estimates of the corresponding parameters, while

Kim(d)

3@ = {Zh(9)2:()} ' Zi() Z (Hp. )y (), ©)
where
i (Hyo ) = €[N Kiy e (d) (Wi, (s — &)}) Kty @i, (A — ),

= (1,0,0,0) , and y ;(d) = (y1;(d ),...,ynj(d))T. Based on (6), for a
fixed bandwidth matrix H,, the WLS estimate of ng) (d) is given by

~(8)

B = au(Hy d){3,(d) ~xIB (d,) ~5(2)"B, @)

m=1

()}

Finally, we can estimate E (d d') by using the sample covariance

function of 7 ’I, )(d), denoted as Z (d d).

To select the optimal bandw1dth in ﬂ ( ) (or ﬁl%) (d)), we use the
generalized cross-validation score method (Zhang and Chen, 2007; Zhu
et al., 2012). We standardize all covariates to have mean zero and
standard deviation one; thus, we may choose a common bandwidth for
all covariates. Moreover, following the arguments of Fan and Zhang

(1999), a small bandwidth leads to a small value of Bias(ﬁ(g) (d)), which
can be dropped from the test statistics hereafter.
Four big-data challenges stem from the calculations of T, (g, d).

e (B1) Calculating E (d d) across all loci and grid points (O(NyNg)) is
computationally 1ntens1ve.

e (B2) Bandwidth selection in T (g, d) across all loci (O(Ng)) can also be
computationally intensive.

e (B3) Substantial computer resources are required to store all Ny x Ng
test statistics Tn(g,d).

e (B4) Determining how to speed up the calculation of T, (g, d).

To solve the computational bottlenecks in (B1)-(B4), we propose the
following solutions:

e (S1) Calculate Z,7 (d d) under the null hypothesis Hy for all loci.

e (S2) Divide all loci into multiple groups based on their minor allele
frequencies (MAFs), and select a common optimal bandwidth for each
group.

e (S3) Develop a GSIS procedure to eliminate many ‘noisy’ loci based on
a global Wald-type statistic.

e (S4) Set up a parallel computing strategy so that processing large-
scale genetic data can be technically feasible with limited computer
resources.

The key idea of (S1) is to calculate 2 (d d) under the null hypothesis

in (4), since it is expected that the null hypothes1s Hy holds for most loci.
Similar to the estimation procedure in (7), the estimate of Zf]‘” (d) under

Hy is given by
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~(g) P _ ]
T (dd)=n" Y {a(d) ~7(d)} ®
i=1
where N 1051 ) 7 () — %73 (dm)}" and
=n 121 ,17;(d). Since 2 (d d) is invariant across all loci, we only

need to calculate Z (d d) at each vertex d and denote it as & »(d) from

here on. Moreover, since Z,,( ) in (8) is only related to the non-genetic
covariates, the optimal bandwidth matrix H, is calculated once at most

for all loci. Thus, the total complexity of computing all {fﬂ(d)} is at least
(d.d)}.

The key idea of (S2) is to select the common optimal bandwidth
matrix Hy in B & (d) according to the MAFs. Specifically, we divide all the
genetic markers into 6 groups according to their MAFs, including
MAFe (0.075,0.15], MAFe (0.15, 0.25), MAFe (0.25,0.35],
MAFe (0.35,0.45], and MAFe€ (0.45,0.50]. For each MAF group, we
randomly select kg SNPs (e.g., kg = 10), and calculate the optimal

bandwidth in ﬁ(g) (d) when each genetic marker is included in model (1).
Consequently, the optimal bandwidth in each group is determined as the
average of all the ky bandwidths. Moreover, the number of MAF groups
can be larger than 6. We elaborate on (S3) and (S4) in the next
subsection.

min(Ny, Ng) times faster than calculating {EL@

2.3. FGWAS (II): A global sure independence screening procedure

The key idea of the GSIS procedure in (S3) is to detect potentially
causal genetic markers by using a dimension reduction method and an
approximation method (Huang et al., 2015). Specifically, since only a
small number of causal genetic markers are expected to contribute to the
imaging phenotypic measures, we consider a global Wald-type statistic to
eliminate many loci with weak or even no genetic effects. Let w(d) be a
prior distribution of d in . The global Wald-type statistic at locus g
denoted as T(g), is an integral of T, (g, d)w(d) with respect to d € Z; that
= [ Ta(g,d)w(d)dL(d), where L(d) is the Lebesgue measure.

de7

Selecting different w(d) allows us to introduce the prior information of
specific regions of interest (ROIs). If there is no such prior information,
then a uniform prior can be used. In this case, except for a constant scalar,
T(g) can be approximated by

T.(g — tr(

is, T(g)

S v (5 @) v

® Q,; (8)vee(Zy (g))m> ; ©)
where Yy (d) = S 1an(Hy, d)y1.(dn), - Yo (dm)])s and
Qx(g) = ZY(8)Zx(g). At a specific locus g, if the area of the true genetic

effect region, denoted by & (g), is relatively large and its corresponding
measurements are moderate, then the value of T,(g) should be relatively
large. Thus, if the value of T, (g) is large, then the locus g is more likely to
be a causal locus.

Our GSIS procedure consists of the following steps:

Step (II.1). Calculate X" X and Px with the computational complexity
of O(np).

Step (IL2). Calculate SN Y, (dn){Z,(dn
computational complexity of O(N2n?).

Step (II.3). For the locus g, calculate T,(g) with the computational
complexity of O((p; + pg)*n?).

Step (I11.4). Repeat Step (I1.3) for all loci and calculate the p—value of
Tn(g) using an approximation method (Zhang and Chen, 2007; Zhu

NY,(dn)" with the



C. Huang et al.

et al., 2012; Huang et al., 2015). Specifically, T,(g) can be approxi-
mated by a y?—type random variable a; y?(a2) + a3, where a3, a2, and
as are respectively given by
T 813(T
w(T) 880

4xr (T x3(T) (10)

,anda3 :K'I(T) —

a) =

where ki (T),k = 1,2, 3, are respectively the first three sample cumulants
of T,(g). Finally, the p—value of T,(g) can be approximated by

using P(x?(a3) > [Ta(g) — asl/a)-

e Step (IL.5). Sort the —log;,(p)—Vvalues of all T,(g)s and select the top
Ny loci (e.g., No = 1,000), denoted by 7 = {g;, ..., &, }- From here
on, we call 7 a candidate significant locus set. Usually, we choose a
relatively large No so as to guarantee that all true positive loci are
contained in 2, with high probability.

The computational complexity of GSIS is primarily associated with
the number of loci, Ng. If Ng is of a super large scale (e.g., 0(108)), the
GSIS procedure can be very time consuming or even fail on a single
computer core with limited computer memory. To address this issue, we
propose a divide-and-conquer algorithm along with a parallel computing
strategy, since the calculation of T, (g) can be done independently. First,
we divide the whole genetic data set into K; groups (e.g., each chro-
mosome as a group). Then, we perform Steps (II.1)-(II.3) independently
for each group of genetic markers. Finally, we combine the T,(g)’s across
all groups and approximate their corresponding p—values based on the
method used in Step (IL.4). Subsequently, we determine the candidate
significant locus set 7. More details on the parallel computing strategy
are provided in the next subsection.

2.4. FGWAS (III): A test procedure
The objectives of the test procedure are

e (0.1) to detect the genetic markers that are significantly associated
with the functional phenotype as a whole; and

e (0.2) to detect the subregion(s) (or compact set(s)) of the functional
phenotype that are significantly associated with some genetic
marker(s).

Note that it is important to detect significant voxel-locus pairs for
VGWAS, but such detection is less meaningful for the functional re-
sponses, which are intrinsically smooth functions. Moreover, the existing
GWAS methods for imaging phenotypes focus on (0.1), whereas we are
particularly interested in (0.2).

To achieve (0.1), we calculate a maximum statistic of all T,(g)’s
across all loci as follows:

(1n

The maximum statistic T,
FWE rate.

To achieve (0.2), we resort to cluster size inference, which plays an
important role in assessing the significance of each subregion that con-
sists of interconnected grid points for which the p-values are greater than
a given threshold, say o = 0.005 or 0.001 (Smith and Nichols, 2009; Ge
et al., 2012). For functional phenotypes, we prefer to replace the cluster
by the subregion from here on. For the locus g, let p(g, d) be the p—value
of Ty(g, d) at the grid point d and let A(g, a;) be the largest subregion at a
given threshold a; based on the map of {p(g,d) : d € Z}. To detect sig-
nificant subregion-locus pairs, we consider a maximum subregion sta-
tistic, i.e.,

~ plays a crucial role in controlling the

A(Z, a)=maxA(g, a), 12)
geT
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which, in practice, can be approximated by a local maximum subregion
statistic A(Z;,) in terms of both size and distribution (Huang
et al., 2015).

We use the wild bootstrap method to approximate the null distribu-
tion of T, » and that of A(Z7;, ;) under the assumption that the null
hypothesis Hy in (4) holds for all (g,d) € £ x &/. We propose an efficient
wild bootstrap procedure to simultaneously detect significant loci and
subregion-locus pairs as follows:

e Step (IIL.1). Calculate T, (g*, d) for each pair (g*,d) €
w([v.(d

o Step (IIL.2). Calculate the uncorrected p—values of T,(g*, d) across all
(g%,d) € 2 x 7 based on the F distribution.

e Step (IH.S). Calculate A(g*,a;) based on the p-values of {T,(g*,d)}

obtained in Step (IIL.2).

Step (II1.4). Apply the wild bootstrap method to the set 7.

Ty X 7 as

D{E,(d)} Y| © Qe vee(Zi(e) ) (a3)

Step (I11.4.1). Fit model (1) under the null hypothesis Hy, which yields
3" (d), 7 (d) and & (d) for all i and d.
— Step (1I1.4.2). Generate a random sample :? and v?(d,,) from a N(0,1)

generator fori =1,...,n and m = 1,...,Ny. B bootstrap samples are
constructed as

YO (d) =xB () + i (dy) +0(d)E; (), b= 1,....B

foralliand d,, € .
— Step (II1.4.3). For all g €
T,(lb)(g) based on the bootstrap samples.
— Step (II1.4.4). Sort all {Tr(lw (8)} according to their magnitudes and
select the top Ny loci to form Z’S(by.
Step (IIL4.5). Calculate T, = maxee s {T\" (g)}.
— Step (II1.4.6). Calculate A®)( 70(1’)
b
{1 (), (g.d) €
suggest directly comparing T (g,d) with the 100(1 — q)th percen-
tile of the F distribution in order to determine significant subregions
at each locus g.

2, calculate the global Wald-type statistic

ar) based
x Z}. For computational efficiency, we

on
7+
<0

Step (II.5). Calculate the FWE corrected p—values of T,(g) based on
the empirical distribution of { ,}b 1. p- Since Ng is much larger
than the sample size, choose a 51gn1ﬁcar1ce level, say a = 0.5.

Step (IIL.6). For each locus g € 77, calculate all possible subregions

and their associated FWE corrected p—values based on the empirical
distribution of {A®(Z;® a))},_,

Similar to the GSIS procedure, the computational issue still exists in
the test procedure for large Ng. We also use the divide-and-conquer al-
gorithm here. Specifically, after generating bootstrap samples in Steps
(II1.4.1)-(I11.4.2), we divide the whole genetic data set into K disjoint
groups such that & = Ul,fil %y and ZxnZp = ¢ for k#k'. Then, Steps
(I1.4.3)-(I11.4.6) are independently performed for bootstrap samples on
each group of genetic markers. For each group, we can obtain the rele-

Lap)}), | fork=1,...

) ,ar) across all groups are calculated as follows:

vant {T
tistics T )/ and A(7

A(b)( f/* ,Kg. Then the maximum sta-

T}Eb,),, = max {Tnb), },b =1,..,B, a4
o 1<k<Kg Tk
A(Z’j“”,a,) = max {A(b)(g’;(f),a,)},b =1,..,B, (15)
1<k<Kg i
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B
which lead to the empirical distributions of {Tff_’),}bzl and

{A(&”S(b),al)}i:l under Hy. Consequently, the corresponding corrected
p—values are derived in Steps (III.5)-(II.6). In addition, this parallel
computing strategy can be conducted on the bootstrap sampling level,
which means calculations on different bootstrap samples in Step (II.4)
can be carried out at the same time on different cores.

The divide-and-conquer algorithm coupled with parallel computing
can achieve computational gain in terms of both memory and speed,
while having the same statistical power as the standard method for sig-
nificant locus detection. Specifically, in GSIS, since the computation of
global test statistic across all loci is independent of each other, the divide-
and-conquer algorithm in Steps (IL.1)-(IL.3) does not change the test
statistics. The same comment is also valid for T,(lb), and A( Z)g(b) ,ar) in the
test procedure.

3. Simulation studies

In this section, we use Monte Carlo simulations to evaluate the finite-
sample performance of FGWAS. The hypothesis testing problem we focus
on is to test the null hypothesis of no association for all the functional
phenotypes at each locus. All computations for these numerical examples
were done in Matlab on a Dell C6100 server. The computation for FGWAS
is efficient even for large-scale imaging genetic data, as shown in the real
data analysis.

We simulated imaging surface data at Ny = 15,000 vertices on the
right hippocampus obtained from the publicly accessible ADNI data.
More information on the ADNI data used in the current study is given in
the next section. We only considered the additive genetic effect of SNPs
on the right hippocampal surface data. The y;;(d)s were generated from
model (1) given by

Ng

yiy(d) =x[B7(d) + > ()8 (d) + n,y(d) + 1,(d)

g=1

(16)

for i=1,...,n and j = 1,2, where &(d) ~ N(0,Q = diag(c?,62)), 2(g)
were simulated genetic data as described below, and x; = (1, x;1, .. .,Xig)T
were generated from U(0,1) for continuous variables or from the Ber-
noulli distribution with a success probability of 0.5 for discrete variables.

The true values of ﬂ;c)(d) and 7;;(d) were set to the estimates ﬁ;c)(d) and
7;;(d) by fitting model (1) without genetic covariates to the real ADNI

data set introduced in the next section. The elements in /};g)(d) forj=1
and 2 corresponding to the pre-specified pairs of causal SNPs and affected
ROIs were set to affect magnitude {f;,j = 1,2} and zero otherwise. In
addition, the affected ROI associated with the causal SNPs was pre-fixed
as a circular region with radius r (Fig. 2).

We simulated genetic data 2;(g) as follows. We used linkage
disequilibrium (LD) blocks defined by the default method (Gabriel, 2002)
of Haploview (Barrett et al., 2005) and PLINK (Purcell et al., 2007) to
form SNP sets. To calculate the LD blocks, n subjects were simulated by

Fig. 2. Simulation settings: Green and blue regions in each panel respectively represent
the right hippocampal surface and the affected ROI associated with the causal SNPs. From
left to right, the radii of the affected ROIs are respectively set to 3,6, and 9.
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randomly combining haplotypes of HapMap CEU subjects. We used
PLINK to determine the LD blocks based on these subjects. We randomly
selected 2000 blocks, and combined haplotypes of HapMap CEU subjects
in each block to form genotype variables for these subjects. We randomly
selected 10 SNPs in each block; thus, we had Ng = 20,000 SNPs for each
subject. Moreover, we chose the first ¢ SNPs as the causal SNPs. We set
the sample size (n) and the number of causal SNPs (g) to be 1,000 and
100, respectively. Finally, we used 100 Monte Carlo realizations.

First, we evaluated the finite sample performance of the proposed
GSIS for different settings of (No,p7, 5, Q). Specifically, we set g} =
0.01, 85 = ap;, in which a was chosen from the set {0.5,1,1.5,2}, and Ny
between 100 and 2000. Moreover, we set the radius of the ROl as r = 6.
We considered two different settings of €, including (i)
Q =diag(c; =062 =0.5); and (i) Q =diag(c; =0.8,062=1). We
defined the causal SNP rate as the ratio of the number of causal SNPs in
2, over the total number of causal SNPs. Table 1 includes the causal SNP
rates under different settings. As expected, the causal SNP rate increases
as Ny and a increase. However, the causal SNP rate is low for small Ny,
especially when 7 and o, are quite large. When N, is set to be larger than
900, almost all causal SNPs are included in the set 7 for most settings of
(B1. 55, Q). See Table 1 for more details.

Second, we evaluated the finite sample performance of FGWAS when
model is misspecified. Assume that the y;;(d)s were generated from the
model given by

100 100+4"

vig(d) = x[B7(d) + > z(9)8 (d) + B (d)xo D

g=1 g=101

zi(g) + ’7i,/(d)

+ &',‘_j(d)
a7

fori=1,...,nandj = 1, 2. It can be seen that, the first 100 + g’ SNPs are
treated as causal SNPs here. The key difference between (17) and (16) is
that there exists an extra interaction term (non-genetic effect x genetic

effect) in (17). Here x;, ﬂ;c)

in the same way as those in (16). The elements of genetic effect coeffi-

(d), n;;(d), and the genetic data 2;(g) were set

cient f; = 5 = f* = 0.02. The genetic data {zi(gk)}zlz1 in the interaction
term are observations from g’ casual SNPs. The interaction effect is
assumed to be homogeneous with non-zero magnitude across the whole
ROI and zero otherwise. Specifically, we set g/ = a/$*, in which a! was
chosen from the set {0.1,0.2,0.5}, ¢’ was chosen from the set
{10, 20,50}, and N, between 100 and 2000. Moreover, we set the radius
of ROI as r = 6. The causal SNP rates under different settings were pre-
sented in Table 2. According to the results, it can be found that, when the

Table 1

Simulation results: causal SNP rates correspond to different settings of (No,f", Q) in the
affected RO, with radius r = 6. The causal SNP rate is defined as the ratio of the number of
causal SNPs in 7 over the total number of causal SNPs.

FGWAS: (f; = 0.01,61 = 0.5,6, = 0.5)

Ba/B1 No

100 300 600 900 1,200 1,500 1800 2000
0.5 0.16 0.32 0.45 0.52 0.60 0.69 0.75 0.76
1 0.15 0.43 0.72 0.99 1.00 1.00 1.00 1.00
1.5 0.18 0.44 0.76 0.98 1.00 1.00 1.00 1.00
2 0.19 0.44 0.78 0.99 1.00 1.00 1.00 1.00
FGWAS: (§; = 0.01,0; = 0.5,05 = 1)
Ba/B3 No

100 300 600 900 1,200 1,500 1800 2000
0.5 0.04 0.05 0.08 0.12 0.17 0.20 0.21 0.24
1 0.16 0.32 0.45 0.52 0.59 0.69 0.74 0.76
15 0.15 0.42 0.67 0.94 0.98 0.99 1.00 1.00
2 0.18 0.44 0.72 0.98 1.00 1.00 1.00 1.00
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Table 2
Simulation results (model misspecification): causal SNP rates correspond to different set-
tings of (No, ', q') in the affected ROI with radius r = 6.

FGWAS: (f = 0.02,¢! = 20,5 = 0.5)

/g No

100 300 600 900 1,200 1,500 1800 2000
0.1 0.08 0.15 0.27 0.40 0.63 0.77 0.91 0.99
0.2 0.10 0.16 0.30 0.44 0.69 0.86 0.98 1.00
0.5 0.14 0.22 0.45 0.68 0.85 0.99 1.00 1.00
FGWAS: (f* = 0.02, " = 0.002,6 = 0.5)
q No

100 300 600 900 1,200 1,500 1800 2000
10 0.07 0.13 0.23 0.34 0.57 0.74 0.88 0.94
20 0.08 0.15 0.27 0.40 0.63 0.77 0.91 0.99
50 0.11 0.17 0.33 0.46 0.69 0.85 0.99 1.00

model is misspecified, FGWAS can still achieve a high causal SNP rate
when Nj is large. Nevertheless, the causal SNP rate increases when either
the interaction effect or the number of non-causal SNPs included in the
interaction term becomes larger.

Third, we evaluated the finite sample performance of FGWAS in
detecting the causal SNP and subregion pairs. We setn = 1,000, ¢ = 100,
Q = 0.5I, (§],p5) = (0.01,0.01), and r = 6. Moreover, we used an un-
corrected oy = 0.005 p-value threshold to identify subregions consisting
of contiguous supra-threshold vertices. If the vertices in a thresholded
cluster overlapped with some vertices in the affected ROI at a causal SNP,
then we call these vertices “true positive vertices”. If a thresholded
subregion did not overlap with any vertices of the affected ROI at any
causal SNP, we call such a subregion a “false positive” subregion. We
summarized the results by using the Dice overlap ratio (DOR), the
number of false positive subregions, and the size in the number of
vertices in false positive subregions. DOR is the ratio between the number
of true positive pixels over the size of the affected ROI (Huang et al.,
2015). Thus, a higher DOR means a higher probability of detecting the
affected ROL As shown in Fig. 3, no false positive subregion is detected.
These results further demonstrate that the GSIS procedure can effectively
detect and localize relatively strong genetic effects. Moreover, the
average DOR of Ny = 500 is higher than that of N, = 100.

Fourth, we compared the proposed FGWAS method with other two
methods, i.e., the standard functional GWAS (Reimherr and Nicolae,
2014) and the FVGWAS package (Huang et al., 2015). In order to make a
fair comparison, we applied all three methods to the same simulated data
sets. Since both standard functional GWAS and FVGWAS are feasible only
for univariate imaging phenotypic measurements, we simplified model
(16) by considering only one imaging measurement, i.e.,
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Three factors are considered in the comparisons: (i) the genetic effect
B.(d) in the affected region, (ii) the number of candidate significant loci
Ny, and (iii) the radius r of the affected ROI. In order to illustrate how
each factor affects the finite sample performance of the three methods,
we fixed two factors and chose different values for one factor in each
setting. Fig. 4 presents the receiver operating characteristic (ROC) curves
for all three methods, corresponding to three different cases. In case 1,
the genetic effect is set to 5, = 0.005 and $, = 0.01, whereas other pa-
rameters , n, Ny, and r are set to 0.5, 1,000, 1,000, and 6, respectively.
In case 2, the number of candidate loci is set to Ny =500 and
N, = 1,000, whereas other parameters Q, n, ., and r are set to 0.5,
1,000, 0.01, and 6, respectively. In case 3, the radius of the affected ROl is
set to r = 3 and r = 9, whereas other parameters Q, n, Ny, and j, are set
to 0.5, 1,000, 1,000, and 0.01, respectively. It can be found that, for each
case, as the factor increases, the areas under the ROC curves for all the
methods increase as well. Moreover, FGWAS outperforms both the
standard functional GWAS and FVGWAS in all three cases, indicating that
compared with standard functional GWAS and FVGWAS, FGWAS
dramatically boosts the power for detecting various settings of genetic
effects and affected ROlIs.

4. ADNI hippocampal surface data analysis
4.1. ADNI data description

Data used in the preparation of this article were obtained from the
ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 by
the National Institute on Aging, National Institute of Biomedical Imaging
and Bioengineering, Food and Drug Administration, private pharma-
ceutical companies and non-profit organizations as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission
tomography, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer's disease (AD). Deter-
mination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians in developing new treatments
and monitoring their effectiveness, as well as lessening the time and cost
of clinical trials. The principal investigator of this initiative is Michael W.
Weiner, MD, at the VA Medical Center and University of California, San
Francisco. ADNI is the result of efforts of many coinvestigators from a
broad range of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the U.S. and Canada.
The goal was to recruit 800 subjects, but the initial study (ADNI-1) has
been followed by ADNI-GO and ADNI-2. To date, these three protocols
have recruited over 1500 adults, ages 55 to 90, to participate in the
research, consisting of cognitively normal older individuals, people with

( Ng early or late MCI, and people with early AD. The follow-up duration of
T alc . . i o
yi(d) = x]p(d) + Z %(2)f(d) +n,(d) + &(d),i=1,...,n.  (18) each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-
&1 GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the
14
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Fig. 3. Simulation results for the association between SNPs and subregions: (a) size in the number of vertices of false positive subregions in each causal SNP; (b) number of false positive
subregions in each causal SNP; and (c) Dice overlap ratio (DOR) in each causal SNP. Parameters (5, ;), Q, and r are set to (0.01,0.01), 0.5I, and 6, respectively.
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Fig. 4. Simulation results for comparisons among FVGWAS, standard functional GWAS, and FGWAS in identifying significant voxel-locus pairs: (a) Case 1. ROC curves of all three methods
with g, = 0.005 and 8, = 0.01, whereas other parameters , n, Ny, and r are set to 0.5, 1000, 1000, and 6, respectively. (b) Case 2. ROC curves of all three methods with Ny = 500 and
Ny = 1,000, whereas other parameters Q, n, 8, and r are set to 0.5, 1000, 0.01, and 6, respectively. (c) Case 3. ROC curves of all three methods with r = 3 and r = 9, whereas other

parameters Q, n, Ny, and j, are set to 0.5, 1000, 1000, and 0.01, respectively.

option to be followed in ADNI-2. For up-to-date information, see www.
adni-info.org.

4.2. Data processing

We applied FGWAS to the joint analysis of anatomical MRI and ge-
netic data collected through ADNI-1. In this data analysis, we included
708 MRI scans from healthy controls and individuals with AD or MCI
(186 AD, 388 MCI, and 224 healthy controls) from ADNI-1. The scans
(from 462 men and 336 women, ages 75.42+6.83 years), which were
performed on a variety of 1.5 T MRI scanners with protocols individu-
alized for each scanner, include standard T1-weighted images obtained
using volumetric 3-dimensional sagittal MPRAGE or equivalent protocols
with varying resolutions. The typical protocol includes: repetition
time = 2400 ms, inversion time = 1000 ms, flip angle = 8°, and field of
view = 24 cm, with a 256 x 256 x 170 acquisition matrix in the x—, y—,
and z—dimensions, which yields a voxel size of 1.25 x 1.26 x 1.2 mm®.
We processed the MRI data by using standard steps, including anterior
commissure and posterior commissure correction, skull-stripping, cere-
bellum removing, intensity inhomogeneity correction, segmentation, and
registration. Subsequently, we carried out automatic regional labeling by
labeling the template and by transferring the labels following the
deformable registration of subject images. After labeling 93 ROIs, we
were able to compute volumes for each of these ROIs for each subject.

We adopted a hippocampal subregional analysis package based on
surface fluid registration (Shi et al., 2013) that uses isothermal co-
ordinates and fluid registration to generate one-to-one hippocampal
surface registration for computing the surface statistics. Then, we
computed the various surface statistics on the registered surface, such as
multivariate tensor-based morphometry statistics, which retain the full

114

tensor information of the deformation Jacobian matrix, together with the
radial distance, which retains information on the deformation along the
surface normal direction. More details can be found in (Wang
et al., 2011).

We considered the 818 subjects' genotype variables acquired by using
the Human 610-Quad BeadChip (Illumina, Inc., San Diego, CA) in the
ADNI database, which includes 620,901 SNPs. To reduce the population
stratification effect, we used data from 749 Caucasians among all 818
subjects with complete imaging measurements at baseline. Quality con-
trol procedures included (i) call rate check per subject and per SNP
marker, (ii) gender check, (iii) sibling pair identification, (iv) the Hardy-
Weinberg equilibrium test, (v) marker removal by MAF, and (vi) popu-
lation stratification. The second line preprocessing steps included
removal of SNPs with (i) more than 5% missing values, (ii) MAF smaller
than 5%, and (iii) Hardy-Weinberg equilibrium p-value <107°.
Remaining missing genotype variables were imputed as the modal value.
After the quality control procedures, 708 subjects and 501,584 SNPs
remained in the final data analysis.

4.3. Data analysis

The hippocampus is believed to be involved in memory, spatial
navigation and memory, and behavioral inhibition. In AD, the hippo-
campus is one of the first regions of the brain to be affected, leading to the
confusion and loss of memory so commonly seen in the early stages of the
disease. Recent work has revealed that the hippocampus is structurally
and functionally asymmetric, and hippocampal asymmetry changes with
AD progression, with the left hippocampus affected first by dementia,
followed by atrophy in the right hippocampus after a time lag.

The objective of this data analysis was to examine the genetic effect of
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each of 501,584 SNPs on either the left or right hippocampus and
whether the genetic pathway of the left hippocampus overlaps with that
of the right after partialing out the genetic effect of APOE ¢4. To achieve
this objective, we applied FGWAS with either the left or right hippo-
campal surface data as the functional phenotypes. Specifically, we chose
the radial distance and determinant of Jacobian matrix as two different
surface measurements. Moreover, in model (1), we included an intercept,
gender, age, APOE ¢4, and the top 5 principal component scores of all
SNPs as covariates. We had 708 subjects, 30,000 vertices on the hippo-
campal surface (15,000 on each side), and 501,584 SNPs. The number of
candidate loci was set as Ny = 2, 000. Then, the total computational time
was 91,423s and 92,091s for the left and right hippocampi, respectively.

We have the following findings. Fig. 5(a)-(d) shows the Manhattan
and QQ plots of the GWAS results for the left and right hippocampal
surfaces, respectively. Moreover, Fig. 6(a, b) shows the density of the
global Wald-type statistic and its y approximation in the GSIS procedure,
which are very close to each other, indicating the accuracy of the y?
approximation. Tables 3 and 4 present the top 50 SNPs associated with
the left and right hippocampal surfaces. At the 10~ significance level, 11
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SNPs were detected as being associated with the left hippocampal sur-
face, while 17 SNPs were found to be associated with the right hippo-
campal surface. Fig. 7(a, b) presents the LocusZoom plot (Pruim et al.,
2010), which shows the regional association results near the top 1 SNP
(rs657132 on gene HRH4, chr 18) from the GSIS procedure on the left
hippocampal surface, and the top 1 SNP (rs4681527 on gene C3orf58,
chr 3) on the right hippocampal surface. In particular, histamine receptor
H4 (HRH4) is a protein-coding gene, and disease associated with HRH4
includes cerebellar degeneration. Moreover, cholinergic receptor M4
(CHRM) is an important paralog of HRH4, and the loss of M4 receptors
has been found in the hippocampus of AD patients (Mulugeta et al.,
2003). Further information about all top 2000 SNPs on each side of the
hippocampal surfaces are available online at “http://odin.mdacc.tmc.
edu/bigs2/Top_2000_SNPs.html”. We also included the group effects
into our MVCM and reran our FGWAS. The corresponding Manhattan and
QQ plots are presented in Fig. 10 in Appendix. In order to compare the
GWAS results obtained under the model including group effects with
those under the model without group effects, the rank-rank analysis
(Plaisier et al., 2010) was conducted to compare the rank consistency of
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Fig. 5. ADNI hippocampal surface GWAS: (a) Manhattan plot (left hippocampal surface); (b) Manhattan plot (right hippocampal surface); (c) QQ plot (left hippocampal surface); (d) QQ

plot (right hippocampal surface).
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density plot of T,(g*,d) and its y? distribution approximation from the bootstrapping procedure on (c) the left and (d) right hippocampal surfaces.

Table 3

ADNI hippocampal surface GWAS: selected top 50 SNPs associated with the left hippocampal surface.
SNP CHR BP p—value Gene SNP CHR BP p—value Gene
15657132 18 22,053,274 1.01E-08 HRH4 rs10821312 9 96,944,581 2.31E-05 MIRLET7DHG
rs604345 18 22,003,302 3.71E-07 IMPACT rs887500 19 2,862,785 2.47E-05 ZNF555
rs582110 18 21,995,436 4.17E-07 IMPACT 157631664 3 4,751,252 2.66E-05 ITPR1
1s546000 18 22,003,116 4.17E-07 IMPACT rs730004 3 44,221,458 3.12E-05 TOPAZ1
rs489631 18 21,989,024 4.81E-07 IMPACT rs6786876 3 86,462,805 3.16E-05 THAP12P2
1516837577 1 194,870,594 1.79E-06 KCNT2 157528690 1 158,765,934 3.44E-05 OR2AQ1P
1511730805 4 12,174,662 5.74E-06 HS3ST1 152037173 16 27,126,509 3.62E-05 C160rf82
rs9580112 13 19,317,385 6.74E-06 RP11-38M15.7 154807347 19 2,857,287 3.66E-05 ZNF555
rs3812872 13 61,986,918 7.16E-06 PCDH20 rs5011374 20 9,212,186 3.68E-05 PLCB4
rs6826085 4 76,870,229 7.38E-06 SDAD1 rs17360351 15 69,542,047 3.68E-05 GLCE
1517197236 8 25,193,338 9.16E-06 DOCK5 1s9552579 13 19,377,679 3.75E-05 RP11-38M15.8
rs9783081 1 247,016,787 1.13E-05 AHCTF1 rs10495737 2 23,238,004 3.77E-05 AC016768.1
152890548 9 4,105,330 1.15E-05 GLIS3 rs1390931 4 101,762,475 3.82E-05 EMCN
152042067 7 132,651,302 1.34E-05 CHCHD3 rs10492041 12 126,592,053 3.83E-05 RP3-446N13.2
1s929714 7 132,630,046 1.34E-05 CHCHD3 rs2800219 1 247,055,427 4.29E-05 AHCTF1
1s2709627 8 25,174,710 1.62E-05 DOCK5 rs2800221 1 247,058,705 4.29E-05 AHCTF1
15628674 18 22,077,035 1.63E-05 HRH4 152960173 8 25,186,301 4.29E-05 DOCKS
154744321 9 96,932,414 1.75E-05 RP11-2B6.3 rs2830058 21 27,484,968 4.36E-05 APP
rs9354911 6 70,971,130 1.78E-05 COL9A1 rs9446340 6 71,826,158 4.47E-05 u3
1510806631 6 70,976,818 1.78E-05 COL9A1 152289672 17 42,932,244 4.63E-05 HIGD1B
1s7969873 12 128,129,387 1.89E-05 RP11-526P6.1 rs902498 5 171,560,741 4.78E-05 STK10
rs2418828 10 108,654,356 1.92E-05 SORCS1 rs1328531 9 80,389,921 4.87E-05 GNAQ
1510418996 19 2,860,166 1.93E-05 ZNF555 159302364 15 93,699,827 4.88E-05 RGMA
1512113716 7 155,975,007 2.09E-05 Y_RNA 1s12518980 5 175,168,827 5.03E-05 HRH2
rs17475359 4 148,566,463 2.26E-05 PRMT9 1517670627 16 10,096,340 5.06E-05 GRIN2A
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Table 4
ADNI hippocampal surface GWAS: selected top 50 SNPs associated with the right hippocampal surface.
SNP CHR BP p—value Gene SNP CHR BP p—value Gene
154681527 3 144,000,439 3.27E-08 RNASSP144 1s10843350 12 29,385,946 1.81E-05 FAR2
157617465 3 143,998,527 1.52E-07 RNA5SP144 rs16828194 2 151,311,055 1.82E-05 RND3
1512264728 10 132,139,574 1.02E-06 RP11-339B9.1 rs4674860 2 224,921,814 2.08E-05 SERPINE2
1510801705 1 89,500,382 1.09E-06 GBP3 1s6798713 3 12,305,587 2.18E-05 GSTM5P1
15749788 2 2,846,181 1.13E-06 AC011995.1 rs2871213 2 98,807,030 2.19E-05 VWA3B
1s823246 2 2,849,167 1.17E-06 AC011995.1 rs1719990 18 5,560,422 2.36E-05 EPB41L3
15652911 10 132,139,875 1.54E-06 RP11-339B9.1 159847186 3 25,081,857 2.39E-05 AC133680.1
rs3108514 2 151,279,247 2.07E-06 RND3 rs6004683 22 25,898,162 2.42E-05 CRYBB2P1
157312068 12 29,435,225 2.11E-06 FAR2 rs1574605 2 130,653,885 2.52E-05 AC079776.1
1s366346 10 132,140,841 2.99E-06 RP11-339B9.1 rs7433347 3 46,716,523 2.59E-05 ALS2CL
151354316 3 143,985,479 4.04E-06 RNASSP144 1517141117 7 19,349,040 3.08E-05 AC007091.1
15282268 2 224,920,176 6.77E-06 SERPINE2 152075650 19 45,395,619 3.08E-05 APOE
rs4599142 2 101,254,300 8.75E-06 NANOGNBP1 rs937341 12 125,093,430 3.22E-05 RP11-83B20.4
156542972 2 101,257,185 8.77E-06 FAT3 152013369 22 25,905,668 3.34E-05 CRYBB2P1
151512890 3 145,951,330 8.83E-06 PLSCR4 rs1367873 2 236,212,377 3.40E-05 AC114814.3
rs3817959 1 14,408,015 8.96E-06 KAZN rs6988179 8 73,035,769 3.65E-05 MSC-AS1
15748608 15 74,516,427 1.10E-05 CCDC33 rs12988342 2 2,849,451 3.83E-05 AC011995.1
154673085 2 224,925,417 1.15E-05 SERPINE2 157656798 4 75,387,973 3.87E-05 AC142293.3
1s11927997 3 135,140,012 1.19E-05 RP11-65709.1 rs1566602 1 211,191,060 4.04E-05 KCNH1
1512499874 4 111,129,756 1.22E-05 ELOVL6 1511906462 20 61,158,952 4.09E-05 C200rf166
1513187102 5 107,995,317 1.24E-05 LINC01023 154349644 4 157,418,154 4.28E-05 RP11-171N4.4
rs16995208 20 49,036,909 1.51E-05 RN7SL636P rs4694691 4 75,383,332 4.30E-05 AC142293.3
rs12635120 3 12,304,614 1.51E-05 AC091492.3 rs802682 6 111,121,188 4.60E-05 CDK19
156734569 2 99,156,296 1.58E-05 INPP4A 1513150416 4 157,403,221 4.71E-05 RP11-171N4.4
159300188 12 29,388,162 1.71E-05 FAR2 rs10194024 2 224,890,840 4.74E-05 SERPINE2
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Fig. 7. ADNI hippocampal surface GWAS: LocusZoom plot showing the regional association results near (a) the top 1 SNP (rs657132) from the GSIS procedure on the left hippocampal
surface and (b) the top 1 SNP (rs4681527) from the GSIS procedure on right hippocampal surface; (¢) corrected —log,,(p)—values across all vertices corresponding to top 2 SNPs on both
the left and right hippocampal surfaces (rs657132 and rs604345 for the left hippocampal surface, rs4681527 and rs3108514 for the right hippocampal surface); (d) —log;,(p)—values for
significant subregions to top 2 SNPs on both the left and right hippocampal surfaces (rs657132 and rs604345 for the left hippocampal surface, rs4681527 and rs3108514 for the right
hippocampal surface).
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top 2000 genes detected in each model. It shows that the results under
the two models are highly consistent with each other.

In Step (II), we first calculated the corrected p-values of T,(g*,d)
across all vertices and candidate loci in 7 to further detect significant
vertex-locus pairs. In order to obtain the empirical distribution of
T.(g*,d) under Hy, the wild bootstrap method was adopted. We set Ny =
2,000 and generated B = 500 bootstrapped samples. We considered a
parallel computing strategy and divided the genetic data into Kg = 10
pieces. Fig. 6(c, d) shows the density plots of T,(g*,d) for Ny, = 2,000,
corresponding to the left and right hippocampal surfaces, respectively,
which are close to their y? approximations. Subsequently, we calculated
the corrected p—values of T,(g*,d). Fig. 7(c) shows the corrected
—log;,(p)—values corresponding to the top 2 SNPs on the left and right
hippocampal surfaces, where the color bar is presented as well.

In order to detect significant subregion-locus pairs, we set o =
0.0001 and calculated all possible subregions and their associated p-
values against the top Ny =2,000 SNPs. Fig. 7(d) shows the
—log;,(p)—values for significant subregions that correspond to the top 2
SNPs on both hippocampal surfaces, where the color bar is also pre-
sented. In particular, for the top 1 SNP, two subregions are found for the
right hippocampal surface and one for the left hippocampal surface;
whereas for the second top SNP, two subregions are found for each side of
the hippocampal surfaces. Moreover, most significant subregions are
likely to be symmetric across the left and right hippocampal surfaces. To
specify the exact locations of significant subregions on the hippocampal
surfaces, we recalled the cytoarchitectonic subregions mapped on blank
MR-based models at 3 T of the hippocampal formation (Duvernoy, 2005;
Frisoni et al., 2008), which are presented in Fig. 8(a). It shows that all the
significant subregions are found in the CAl subfield. Specifically, the
most significant subregion (blue region indicated in Fig. 7(b)) is found on
the lateral and medial aspects of the tail (CA1 subfield), and other sub-
regions are found on the dorsolateral aspect of the head (CA1 subfield). It
is interesting to note that volumes of similar hippocampal subregions
were found to be affected in AD (Frisoni et al., 2008), indicating that the
results obtained from FGWAS are in agreement with those of previ-
ous work.

We applied the rank-rank scatter plot in order to investigate the

T
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connection between the genetic pathway for the left hippocampus and
that for the right hippocampus. We first selected the top 2000 genes in
the GWAS result on each side of the hippocampal surface and combined
them, i.e., 3,562 genes in total. Note that the rank information of each
gene was calculated based on the largest —log;,(p)—value of SNPs
associated with this gene. According to the rank information, the rank-
rank scatter plot is presented in Fig. 8(b). It can be found that the two
genetic pathways have weak connection. Specifically, only a few top
genes have similar rank information on the left and right hippocampal
surfaces, indicating that hippocampal asymmetry exists. In fact, the
hippocampus was found to be structurally and functionally asymmetric
in both healthy adults and AD patients (Shi et al., 2009; Maruszak and
Thuret, 2013). Furthermore, different gene-environment interaction ef-
fects are found on different hippocampal subfields (Rabl et al., 2014).
Therefore, the hippocampal asymmetry in our studies may be sound.
Apart from the existence of hippocampal asymmetry, we wanted to
examine whether any common genetic effect is associated with AD on
both the left and right hippocampal surfaces. There is one gene, RBFox1,
with similar rank information on both sides of the hippocampus (rank:
134 on the left hippocampal surface and 137 on the right hippocampal
surface). Specifically, the amyloid precursor protein (APP) was found to
be altered by transient RBFox1 expression in HEK293 and HeLa cells.
Moreover, proteolytic processing of APP leads to the formation of
p-amyloid (Ap) peptides, which accumulate in the brains of those
affected by AD (Ghiso and Frangione, 2002). Therefore, RBFox1, which
presents a common genetic effect on both sides of the hippocampus, may
play an important role in the progression of AD.

Finally, we calculated the polygenic risk score (PRS) at each vertex for
multiple thresholds of p-values (i.e., 0.001, 0.01, 0.05, and 0.1). Then, we
used a vertex-wise linear regression model and the coefficient of deter-
mination, R%, to assess the proportion of variation in each imaging
measurement that is explained by the PRS. The estimated R? values
across all vertices for two different types of imaging measurements are
reported in Fig. 9. As the threshold increases, the estimated R? values
across all vertices increase. When the threshold is 0.05 or 0.1, the esti-
mated R? values are all above 0.5. Interestingly, comparing Fig. 9 with

Rank-rank Analysis

Rank scatter plot

aoeyng reduresoddryy 3ySry

Left Hippocampal Surface

(b)

Fig. 8. ADNI hippocampal surface GWAS: (a) Cytoarchitectonic subregions mapped on blank MR-based models at 3 T of the hippocampal formation (Duvernoy, 2005; Frisoni et al., 2006,
2008); (b) Rank-rank scatter plots. The rank information of both the top 2000 genes on the left hippocampal surface and those on the right hippocampal surface, which were calculated

based on the largest —log;,(p)—values of SNPs associated with each gene.
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Fig. 9. ADNI hippocampal surface GWAS: Top: estimated R? for the imaging measurement (radial distance) across all vertices in multiple thresholds of p-values ((a) 0.001, (b) 0.01, (c)
0.05, and (d) 0.1); Bottom: estimated R? for the imaging measurement (determinant of Jacobian matrix) across all vertices in multiple thresholds of p-values ((f) 0.001, (g) 0.01, (h) 0.05,

and (i) 0.1).

Fig. 7(d) reveals that the estimated R? values in the significant sub-
regions, which were detected in Step (III), are larger than those in other
regions and more likely increase as the threshold increases.

5. Conclusion and discussion

We have developed a FGWAS pipeline for efficiently carrying out
genome-wide association analysis of surface-based imaging genetic data.
Our proposed FGWAS consists of an MVCM, a GSIS procedure, and a
detection procedure based on wild bootstrapping methods. Three key
advantages of FGWAS have been discovered: (i) the spatial correlation
structure of imaging data and variability of multiple phenotypic mea-
surements considered in the multivariate varying coefficient model; (ii)
much lower computational complexity compared to standard functional
GWAS (Reimherr and Nicolae, 2014), and (iii) a parallel computing
strategy that makes FGWAS feasible for super large-scale genetic data.
Simulation studies have been conducted to evaluate the finite sample
performance of FGWAS. We successfully applied FGWAS to hippocampal
surface data and genetic data from the ADNI. Our FGWAS is a valuable
statistical toolbox for fast, large-scale imaging genetic analysis.

There are two substantial issues to be addressed in our future
research. First, since our FGWAS is still a single SNP analysis framework
(Huang et al., 2015), the power of FGWAS may be undermined by un-
observed causal SNPs, correlation among adjacent SNPs, and SNP-SNP
interactions (Tzeng et al., 2011; Wu et al., 2011). It has been shown
that alternative approaches for testing the association between a single
SNP set and individual phenotypes are promising for improving the
power of GWAS (Ge et al., 2012; Thompson et al., 2013). Therefore, it is
of great importance to generalize our FGWAS for mapping the association
between a SNP set and functional neuroimaging.

Second, in this paper, our FGWAS can only be used to detect the
genetic markers that influence neuroimaging phenotypes. However, as in
GWAS of AD, a question of interest is to test the null hypothesis of no
association between functional phenotypes and the genotypes or genetic
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interactions (gene-environment), for example, genome-wide interaction
analysis of relating SNPs to education level (Frost et al., 2016), case
control conditions or memory scores (Yan et al., 2015). Meanwhile,
detecting these interactions within genome-wide data can be challenging
due to the loss in statistical power and computational efficiency. There-
fore, generalizing our FGWAS for testing genetic interaction effects will
be another aim in our future work.
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Fig. 10: ADNI hippocampal surface GWAS (model with group effects): (a) Manhattan plot (left hippocampal surface); (b) QQ plot (left hippocampal
surface); (c) rank-rank scatter plot (left hippocampal surface); (d) Manhattan plot (right hippocampal surface); (e) QQ plot (right hippocampal surface);

(f) rank-rank scatter plot (right hippocampal surface).
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